If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-2w-264=0
a = 2; b = -2; c = -264;
Δ = b2-4ac
Δ = -22-4·2·(-264)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-46}{2*2}=\frac{-44}{4} =-11 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+46}{2*2}=\frac{48}{4} =12 $
| (Z+2)(z-4)+(z-4)(z-6)=0 | | 3x^2-6x+9=33 | | 26=6p+8 | | 7d+3=21 | | 3x+5/2=42 | | 5h+5/11=5 | | 7-7f=-9-8f | | 4d+2/2=17 | | 12r-5(r-1)=12+6 | | 4x+78x=52x+8 | | 4x+78x=52x=+8 | | 3a+6/2=6 | | 4a+4/2=10 | | -6=3+a | | Y=2E+08x | | Y=2E+-8x | | c/4=5/10 | | 16/4=r/6 | | 0=-4x^2+10x-5 | | |-16|+6^2=20y-|-38|-19y | | (x^2)^4-x^-5=8 | | 3x+16x=47+x | | 19u+18u-16u+7u=19u+22u | | 480000=4,8*10^x | | -26=+4x=-39+15x | | 5x+4=2x+12 | | a=2400*3600 | | a=24003600 | | 8a(a+2)=9 | | x−5/3=1 | | x−53=1 | | 2(x+1)+3x=16 |